

An

Training Guide

SQL & SQL*Plus
for

Beginners

www.appltop.com

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 2

www.appltop.com
info@appltop.com

Course Introduction

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 3

www.appltop.com
info@appltop.com

Course Objectives

This course is designed to give each delegate a

basic understanding/awareness of the following...

• Oracle SQL

• Oracle SQL*Plus

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 4

www.appltop.com
info@appltop.com

Course Objectives

This course is designed to give each delegate a basic

understanding of the following topics...

• Oracle SQL. You will learn how to use the industry

standard tool for working with a Relational Database.

You will also learn many other things, from

constructing simple queries to creating your own

tables.

• Oracle SQL*Plus. After the course you should have a

good understanding of SQL*Plus, from starting it, to

creating simple reports on it.

During the course there will be several exercises to

complete.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 5

www.appltop.com
info@appltop.com

Note that this guide is meant only as an introduction to

SQL and SQL*Plus and therefore much of the newer,

more advanced features available in Oracle databases

8i, 9i and 10g are not covered.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 6

www.appltop.com
info@appltop.com

Course Contents

1 – Getting Started 11
RDB � A quick refresher 12
What are SQL & SQL*Plus? 19

2 – Introduction to SQL & SQL*Plus 21
Introduction to SQL 22
DML or DDL? 23
Starting SQL*Plus 24

Lab 1 26

Entering SQL Commands 27
Basic Query Block 28
Selecting Specific Columns 29
Arithmetic Operators 30
Column Aliases 31
Concatenation 32
Literals 33
NULL Values 34
Duplicate Rows 37
Ordering Data 38
Row Restriction 40

Using Logical Operators 41
Using SQL Operators 42
Using LIKE 43
Negating a Comparison 44
Multiple Conditions & Operator Precedence 46

Basic SQL*Plus 50
Summary 55
Lab 2 57

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 7

www.appltop.com
info@appltop.com

3 – Row & Group Functions 58
Row functions 60
 Character functions 62
 LOWER, UPPER & INITCAP 63
 LPAD & RPAD 64
 SUBSTR 65
 INSTR 66
 LTRIM/RTRIM 67
 LENGTH 68
 TRANSLATE 69
 REPLACE 70
 Number functions 71
 ROUND 72
 TRUNC 73
 SIGN 74
 CEIL & FLOOR 75
 Mathematical functions 76
 Oracle Dates & Date Functions 77
 MONTHS_BETWEEN 80
 ADD_MONTHS 81
 NEXT_DAY 82
 LAST_DAY 83
 ROUND & TRUNC 84
 Conversion Functions 85
 TO_CHAR & Common Format Masks 86
 TO_NUMBER 89
 TO_DATE 90
 Functions that accept any kind of data 91
 NVL 92
 GREATEST & LEAST 93
 DECODE 94

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 8

www.appltop.com
info@appltop.com

Nesting Functions 95
Group Functions 96
 Group functions 97

Grouping Data 98
Omitting Groups 100

Summary 101

Lab 3 103

4 - Querying More Than One Table 104
Joins 106
 Product 107
 Equi join 108
 Table Aliases 109
 Non-Equi join 110
 Outer join 111
 Self join 112
Set Operators 113
 UNION 115
 INTERSECT 116
 MINUS 117
 Rules 118
Subqueries 119
 Single Row 120
 Multiple Row 122
 ANY/SOME Operator 123
 ALL Operator 124
 Correlated 126
 EXISTS Operator 128
Summary 129

Lab 4 131

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 9

www.appltop.com
info@appltop.com

5 - Modifying Data & the Database 132
Inserting new data 134
Updating existing data 137
Deleting data 140
Transaction Processing 142

COMMIT 144
 ROLLBACK 145
 SAVEPOINT 146
Using DDL 148
 Tables 150
 Indexes 154
 Synonyms 156
 Privileges 157
 Views 158
 Sequences 160
Summary 163

Lab 5 165

6 – More SQL*Plus 166
SQL*Plus variables 168
 Ampersand variables 169
 Double Ampersand variables 170
Basic SQL*Plus Reporting 171
 Adding a page title 172
 Setting a BREAK point 173
Saving output to a file 174
Summary 175

Lab 6 177

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 10

www.appltop.com
info@appltop.com

Answers to Exercises 178

Demo Tables 185

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 11

www.appltop.com
info@appltop.com

Section One
Getting Started

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 12

www.appltop.com
info@appltop.com

RDB – A Quick Refresher

RDB Constructs

Four basic constructs make up a Relational

Database: -

• Tables

• Columns

• Rows

• Fields

In addition to the above there is the concept of key

values: -

• Primary Keys

• Foreign Keys

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 13

www.appltop.com
info@appltop.com

RDB Constructs

To understand Relational Databases, you need to understand the
four basic constructs of an RDB and the concept of key values: -

Tables A table can be thought of as a storage area, like a filing

cabinet. You use tables to store information about
anything: employees, departments, etc. A database may
only contain one table, or it may contain thousands.

Rows If table has been defined to hold information about (for
example) employees, a row is a horizontal cross section
into the table which contains the information about a
single employee.

Columns A column is the vertical cross section of a table, or in
other words, a column defines each of the attributes
about the data stored on a particular table. For example,
if you have a table which holds employee information,
you could have several columns which determine
employee number, name, job�etc.

Fields A field is where rows and columns intersect. A field points
to a particular column on a particular row within a table.

Primary Keys A primary key is a column that defines the uniqueness of
a row. For example, with employee number, you would
only ever want one employee with a number of 10001.

Foreign Keys A foreign key defines how different tables relate to each
other. For example, if you have defined two tables, one
for employees and one for departments, there will be a
foreign key column on the employee table which relates to
the department code column on the department table.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 14

www.appltop.com
info@appltop.com

 RDB Constructs

The EMP Table

EMP ENAME JOB MGR HIREDATE SAL BONUS DEPTNO

10001 HAMIL PROGRAMMER 10005 10-JAN-1976 2,000.00 500.00 10

10002 FORD ANALYST 10005 20-MAR-1976 3,000.00 10

10003 LUCAS BIG BOSS 18-AUG-1976 10,000.00 20

10004 JONES PROGRAMMER 10005 27-SEP-1976 2,100.00 1,500.00 10

10005 FISHER TEAM LEADER 10003 14-APR-1976 4,000.00 20

A primary key
column containing
employee number

A single row
representing a
single employee

A normal column,
not a key value

A foreign key
column which
links employee
to department

A field, found at
the intersection of
a row and column

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 15

www.appltop.com
info@appltop.com

Relational Operators

 X =

 Product

 + =

Join Union Intersect Difference

Restriction

Projection

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 16

www.appltop.com
info@appltop.com

Relational Operators

Relational Operators are used to extract and combine data for
selection. They can be thought of as functions that can be
performed on data held within a relational database.

Relation Description
Restriction Restriction is an operation that selects rows from a

relation that meet certain conditions. There can be
none, one or many conditions. This is sometimes
referred to as a �horizontal subset�.

Projection This is an operation that only selects specified
columns from a relation and is suitably referred to
as the �vertical subset�.

Product The product operation is the result of selecting
rows from two or more relations. The resulting set
of rows returned is often very large.

Join This operation is the result of selecting rows from
two more relations using one or more specified
conditions. Joins are often made via foreign key
columns.

Union This retrieves unique rows that appear in either or
both of two relations. UNION ALL can be used to
retrieve ALL rows from either or both tables.

Intersect This retrieves all rows that appear in both of two
relations.

Difference This retrieves rows that appear in one relation
only.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 17

www.appltop.com
info@appltop.com

RDB Properties

Database Properties: -

• Individual collection of tables

• User does not need to know how data is accessed

• Uses simple language called SQL for all actions

• Uses set operations, not row by row processing

• Can be modified online

Table Properties: -

• No duplicate columns or rows

• Row and column order is insignificant

• Field values are atomic, i.e. They cannot be

broken into component parts

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 18

www.appltop.com
info@appltop.com

RDB Properties

A Relational Database has the following properties: -

• It appears as a collection of individual tables to the user, even

though the database may be contained in a single file.
• The user does not specify the access route and does not need

to know how the data is physically stored.
• The user must know which tables can be accessed by table

name
• The user queries and modifies the database using an English

like, non-procedural 4GL, otherwise known as a Structured
Query Language or SQL for short.

• The database provides the user with a set of operators for
partitioning and combining relations via SQL. (see Relational
Operators)

• Its structure can be modified easily

Table Properties

A table on a database has the following properties: -

• Each row on a table should be unique. Each row can be

identified by a Primary Key column *
• There must be no duplicate column names
• Row order is insignificant, default order is the order in which

rows are inserted into a table
• Column order is insignificant when the data is stored. Its order

is defined when data is retrieved.
• All field values are atomic, or in other words they cannot be

broken down into smaller components **

 * You may come across table definitions in Oracle that have no primary key
column enforcing uniqueness. This is allowed, but under the hood Oracle
maintains uniqueness using a special column called ROWID

** Traditionally, older database systems held rows as a single column, which
was broken into its component parts by the programmer.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 19

www.appltop.com
info@appltop.com

What are SQL & SQL*Plus?

Okay, what exactly are SQL & SQL*Plus?.

SQL is the standard language used for querying

Relational Databases. It allows you to view and

change data held within an RDB as well as allowing

you to actually modify the structure of the database.

SQL*Plus is Oracle�s front-end interface to SQL.

From SQL*Plus you can create SQL scripts.

SQL*Plus also has its own set of commands which

aid SQL script development, and it also allows you

to produce simple reports.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 20

www.appltop.com
info@appltop.com

What is Next?

We�ve had a quick refresher on the concepts of a

Relational Database and we�ve had a very brief

description what SQL & SQL*Plus are. The next

section jumps straight in and actually starts on basic

SQL commands.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 21

www.appltop.com
info@appltop.com

Section Two
Introduction to SQL

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 22

www.appltop.com
info@appltop.com

Introduction to SQL

Very briefly, before we get into actually using SQL,

let�s summarise what can be done with SQL: -

• Query the Database - SQL allows you to easily

query data held on the database. Queries can be

very simple and only take up a couple of lines or

they can be quite complex and take up several

pages of text.

• Change Data held within the Database - Changing

data is just as easy as querying the data. Existing

data can be modified, and you can remove data

or insert new data.

• Change the Structure of the Database - SQL

allows you to actually modify the structure of the

database, meaning you can easily create new

database objects such as tables, indexes, views,

sequences�etc.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 23

www.appltop.com
info@appltop.com

DML or DDL?

Most SQL commands fall into one of three

categories:

• Queries - You will use these the most. They are

for retrieving data from the database, and they

are neither DML nor DDL.

• Commands that allow you to modify the data held

within the database - these commands are

referred to as Data Manipulation Language

commands or DML for short.

• Commands which allow you to modify the

structure of the database - these commands are

known as Data Definition Language

commands or DDL for short

During this course we will learn how to use

commands from all categories.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 24

www.appltop.com
info@appltop.com

Starting SQL*Plus

Before you can use any SQL commands, you must

log into the database using SQL*Plus. SQL*Plus can

usually be found as an icon on your desktop (if you

are running a Windows OS), or it is available whilst

you are logged into a UNIX box.

• If you want to run SQL*Plus from the Windows

desktop, simply double click on the icon. You will

then be asked for a username and password.

• If you are wanting to start SQL*Plus whilst logged

into a UNIX box, then simply type sqlplus from

the command line. You will again be asked for a

username and password.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 25

www.appltop.com
info@appltop.com

Starting SQL*Plus

Before you can use any SQL commands, you must log into the
database using SQL*Plus. SQL*Plus can usually be found as an
Icon on your desktop (if you are running a windows OS), or,
SQL*Plus can be accessed whilst logged into a UNIX box where
the database server can be found.
• If you want to run SQL*Plus from Windows, simply double click

on the SQL*Plus Icon, at this point you will be asked for an
Oracle username and password.

• If you are wanting to start SQL*Plus from in your UNIX
session, simply type sqlplus at the command line, you will
now be asked for a Oracle username and password.

In either case, enter the username and password provided. You
will now see the SQL*Plus command prompt:
 SQL>

To quit out of SQL*Plus simply enter the following command:
 SQL> quit

UNIX – An example
From the UNIX command line, simply enter:
 sqlplus

or, you can provide the username and password from the
command line:
 sqlplus user/password

you can also provide the database instance name you wish to log
onto:
 sqlplus user/password@DEV

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 26

www.appltop.com
info@appltop.com

1 Log into the database using SQL*Plus from the Windows

desktop. Once you see the SQL*Plus prompt, quit out of
SQL*Plus.

2 Log into the database using SQL*Plus from your UNIX
session. Once you see the SQL*Plus prompt, quit out of
SQL*Plus.

Lab 1

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 27

www.appltop.com
info@appltop.com

Entering SQL Commands

Once you are logged into the database using

SQL*Plus, you can enter either SQL*Plus commands

or SQL commands. There are a few things you

should note before you start typing:-

• Commands may be on a single line, or many lines

• You should place different clauses on separate

lines for the sake of readability - also make use of

tabs and indents

• SQL Command words cannot be split or

abbreviated

• SQL commands are not case sensitive

• All commands entered at the SQL*Plus prompt

are saved into a command buffer

• You can execute SQL commands in a number of

ways:

• Place a semicolon (;) at the end of the last

clause

• Place a forward slash (/) at the SQL prompt

• Issue the SQL*Plus r[un] command

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 28

www.appltop.com
info@appltop.com

Basic Query Block

You now know how to log into the database; we

have also covered how to enter basic commands.

Let�s now try to write our first SQL statement to

query the database.

The basic query block is made up of two clauses:

• SELECT which columns?

• FROM which tables?

For example:
 SELECT ename

FROM emp;

The above statement will select the ENAME column

from the EMP table. You can use a * to specify all

columns:
 SELECT *

 FROM emp;

Table Definition

To view the columns on a table use the desc

SQL*Plus command:
 desc emp

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 29

www.appltop.com
info@appltop.com

Selecting Specific Columns

You can select any columns in any order that appear

on the table specified in the FROM clause.

• Use a comma (,) as a column separator

• Specify columns in the order you wish to see

them in

• Data is justified by default as follows:-

• Dates/characters to the left

• Numbers to the right

For example,
SELECT empno

, ename
, sal

FROM emp;

would produce output as follows:-

EMPNO ENAME SAL
------- ----------- ------
100001 JONES 100.00
100002 SMITH 45.48
100010 WARD 234.89
100010 FORD 523.56

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 30

www.appltop.com
info@appltop.com

Arithmetic Operators

At some point you may want to perform some

arithmetic calculations based on the data returned

by the SELECT statement. This can be achieved

using SQL�s arithmetic operators:

• Multiply *

• Divide /

• Add +

• Subtract -

Normal operator precedence applies - you can also

use brackets to force precedence.

For example, to find the annual salary of all

employees:
 SELECT empno
 , sal * 12
 FROM emp;

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 31

www.appltop.com
info@appltop.com

Column Aliases

The heading SQL*Plus will give to columns is by

default based on the column name, but what about

situations as in the previous example?
 SELECT empno
 , sal * 12
 FROM emp;

This SQL statement will give the following output:
EMPNO SAL*12
----- ------
100001 12500
100002 25000

Notice the second column, SAL*12 - not very user

friendly. Using column aliases you can change the

headings, then simply follow the column name with

a space and the column alias:
 SELECT empno employee_number
 , sal*12 annual_salary
 FROM emp

Column aliases must not contain any white space

and the case is ignored. You can get around this by

enclosing the alias in double quotes, as follows:
 SELECT empno "Employee Number"
 , sal*50 "Annual Salary"
 FROM emp;

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 32

www.appltop.com
info@appltop.com

Concatenation

You can merge the output of two or more columns

together using the concatenation operator (||). For

example:
 SELECT 'Name='||ename name
 FROM emp;

This SQL statement will give the following output:

NAME

Name=JONES
Name=SMITH

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 33

www.appltop.com
info@appltop.com

Literals

A literal is a character/expression in the SELECT

clause. For example,
SELECT ename

, 'works in department' literal
, deptno

FROM emp;

gives the following output:
ENAME

LITERAL

DEPTNO

SMITH works in department 10
JONES works in department 20
.

Date and character literals must be enclosed in

single quotes.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 34

www.appltop.com
info@appltop.com

NULL Values

If a row contains a column which has no data in it,

then its value is said to be NULL.

NULL is a value that is unavailable, unassigned,

unknown or inapplicable.

• NULL is not the same as ZERO

• If NULL is part of an expression, then the result

will ALWAYS be NULL

In our example emp table, we have the column

comm which is only populated for Salesmen. If you

were to perform the following:
 SELECT ename
 , sal*12 + comm remuneration
 FROM emp;

then the remuneration column would be NULL

wherever comm was NULL.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 35

www.appltop.com
info@appltop.com

NVL Function

You can solve the problem of NULL values causing

expressions to be NULL by using the NVL function.

NVL simply puts a value where a NULL would

otherwise appear.

• NVL can be used with date, character and

number datatypes

• NVL takes two parameters:-

• the column you are checking for NULL

• the value you wish NVL to return if the first

parameter is NULL

So, making use of NVL in the example on the

previous page, we have:
 SELECT surname
 , sal*12 + NVL(comm,0) remuneration
 FROM emp;

The use of NVL in this example always ensures the

value of the comm column is assumed to be 0 if it is

NULL, thus ensuring the remuneration column is

always calculated correctly.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 36

www.appltop.com
info@appltop.com

NVL Examples

Here are a few examples using the NVL function:-

NVL(a_string,'NOT SET')
NVL(a_date,SYSDATE)
NVL(a_number,-1)

Note

Both parameters passed to NVL must have matching

datatypes.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 37

www.appltop.com
info@appltop.com

Duplicate Rows

Whenever you execute a SELECT statement, by

default, all rows are selected. For example,
SELECT deptno
FROM emp;

will give something like:
DEPTNO

10
20
20
30
10
40
50
50

You can prevent duplicate rows from being selected

by using the DISTINCT keyword. Simply follow the

SELECT keyword with DISTINCT; for example,
 SELECT DISTINCT deptno
 FROM emp;

would give:
DEPTNO

10
20
30
40
50

The DISTINCT keyword affects ALL columns in the

SELECT clause.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 38

www.appltop.com
info@appltop.com

Ordering Data

The order of rows returned by a SELECT statement

is, by default, undefined. You can use the ORDER

BY clause to sort the rows. For example,
SELECT empno
FROM emp
ORDER BY empno;

will give something like:
EMPNO

10001
10002
10003
10004

 . . .

The ORDER BY clause is simply added to the end of

your SELECT statement.

• Default order is ascending - use DESC after the

column name to change order

• There is no limit on the number of sort columns

• There is no need to SELECT sort column

• You can sort using expressions and aliases

• NULL values are sorted high

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 39

www.appltop.com
info@appltop.com

ORDER BY Examples

Here are a few examples of using the ORDER BY

clause:
SELECT empno
FROM emp
ORDER BY empno;

SELECT ename

, sal*12 + NVL(comm,0) renum
FROM emp
ORDER BY renum DESC;

SELECT deptno
 , hiredate
 , ename
FROM emp
ORDER BY deptno
 , hiredate DESC
 , ename

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 40

www.appltop.com
info@appltop.com

Row Restriction

A simple SELECT statement, such as:

SELECT empno
FROM emp
ORDER BY empno;

will return all rows from the emp table, but if you

only want a list of employees who work in

department 10, you would use the WHERE clause.

The WHERE clause MUST appear after the FROM

clause. You specify conditions in the WHERE clause

that must be met if the row is to be returned.

Conditions are basically comparisons of

columns/literals using logical operators and SQL

operators. Here is an example:
SELECT empno
FROM emp
WHERE deptno = 10
ORDER BY empno;

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 41

www.appltop.com
info@appltop.com

Row Restriction using Logical Operators

The following logical operators are available:

Operator Meaning
= equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to

 A WHERE clause is generally made up of three

elements:

• Column name

• Comparison operator (logical operator)

• Column name/literal

Some examples:
SELECT empno
FROM emp
WHERE hiredate <= '01-Jan-98';

SELECT ename
 , empno
FROM emp
WHERE job = 'CLERK';

SELECT empno
FROM emp
WHERE deptno = 10;

SELECT *
FROM emp
WHERE comm > sal;

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 42

www.appltop.com
info@appltop.com

Row Restriction using SQL Operators

The following SQL operators are available:

Operator Meaning
BETWEEN between two values (inclusive)
IN match any in a list of values
IS NULL is a NULL value
LIKE match a character pattern

Some examples:
SELECT empno
FROM emp
WHERE deptno BETWEEN 20 AND 50;

SELECT ename
 , job
FROM emp
WHERE deptno IN (10,20,30,40,50);

SELECT empno
FROM emp
WHERE comm IS NULL;

The LIKE operator is covered on the next page.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 43

www.appltop.com
info@appltop.com

Row Restriction using LIKE

Sometimes you may not know the exact value to

search for: for example, you may want a list of all

employees whose name begins with the letter S.

You perform this kind of comparison using the LIKE

operator.

The LIKE operator expects a wildcard search

pattern. A wildcard is basically a way to specify

parts of a string which you do not know.

Wildcard Symbols Available

Symbol Represents
% any sequence of zero or more characters
_ (underscore) any single character

Some examples:

To list all employees whose names begin with S:
SELECT *
FROM emp
WHERE ename LIKE 'S%';

To list all employees whose names have exactly 4

characters:
SELECT *
FROM emp
WHERE ename LIKE '_ _ _ _'; (no spaces between _)

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 44

www.appltop.com
info@appltop.com

Negating a Comparison

Rather than writing a WHERE clause which says

"select rows which meet a certain condition", it may

well be easier to say "select rows which DO NOT

meet a certain condition". You do this with a negate

expression.

Negating Logical Operators

Operator Meaning
<> Not equal to
!= Same as <>
NOT column = Same as <>
NOT column > Not greater than

Negating SQL Operators

Operator Meaning
NOT BETWEEN not between two values
NOT IN not in a list of values
NOT LIKE not in a character pattern
IS NOT NULL is not a NULL value

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 45

www.appltop.com
info@appltop.com

Examples of Negating a Comparison

To select all rows where the department is not 10,

20 or 30:
SELECT *
FROM emp
WHERE deptno NOT IN(10,20,30);

To select all rows where the name does not begin

with S:
SELECT *
FROM emp
WHERE ename NOT LIKE 'S%';

To select all rows where the comm column is not

null:
SELECT *
FROM emp
WHERE comm IS NOT NULL;

To select all rows where the hiredate is not

during 1998:
SELECT *
FROM emp
WHERE hiredate NOT BETWEEN '01-jan-99'
 AND '31-jan-99;

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 46

www.appltop.com
info@appltop.com

Multiple Conditions

A WHERE clause is not restricted to a single

condition - it can contain any number of conditions.

Multiple conditions used together are referred to as

a compound logical expression.

You can use the AND and OR keywords to create

WHERE clauses with multiple conditions.

• A condition using the AND keyword is true if

BOTH conditions are true

• A condition using the OR keyword is true if

EITHER condition is true

Some examples:

To select all rows where the department is 10 AND

the salary is greater than 1000:
SELECT *
FROM emp
WHERE deptno = 10
AND sal >= 1000;

To select all rows where the department is 10 OR

the salary is greater than 1000:
SELECT *
FROM emp
WHERE deptno = 10
OR sal >= 1000;

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 47

www.appltop.com
info@appltop.com

Multiple Condition Examples

To select all employees who were hired before July

1997 whose commission is more than £1,000 but

less than £1,500:
 SELECT *
 FROM emp
 WHERE hiredate < '01-jul-99'

AND NVL(comm,0) BEWTEEN 1001 AND 1499;

To select all employees who are not clerks but do

work in departments 10, 40 or 50:
 SELECT *
 FROM emp
 WHERE job <> 'CLERK'
 AND deptno IN (10,40,50);

To select employees who work in department 10

who earn more than £10,000 per annum, or

employees who work in department 30 who earn

more than £15,000 per annum:
SELECT *
FROM emp
WHERE (deptno = 10 AND sal*12 > 10000)
OR (deptno = 30 AND sal*12 > 15000);

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 48

www.appltop.com
info@appltop.com

Operator Precedence

When constructing a WHERE clause you need to be

aware of operator precedence. This determines

how a condition is evaluated, and it can greatly

affect the results. Operators are evaluated in a strict

order, as follows:

1. All Logical and SQL operators

2. NOT

3. AND

4. OR

Default Operator Precedence can be overruled by

using parentheses.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 49

www.appltop.com
info@appltop.com

Operator Precedence Examples

To select all managers in any department AND all

clerks in department 10:
SELECT *
FROM emp
WHERE deptno = 10
AND job='CLERK' OR JOB ='MANAGER' ;

The following would produce different results:
SELECT *
FROM emp
WHERE deptno = 10
AND (job='CLERK' OR JOB ='MANAGER');

The second statement says "select all rows where

deptno is 10 and job is either CLERK or MANAGER� -

this would only give rows where department is 10

AND job is MANAGER OR CLERK.

Tip

If you are unsure as to exactly how a condition will

be evaluated, feel free to use parentheses.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 50

www.appltop.com
info@appltop.com

Basic SQL*Plus

As we saw earlier, the SQL language is actually

accessed from within a tool called SQL*Plus. Before

we finish this section of the course with the

exercises, we need to take a look at some of the

basic SQL*Plus commands you will need to use

when working with SQL. We will quickly cover the

following:

• Editing and executing SQL in the buffer

• Saving, loading and executing SQL files

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 51

www.appltop.com
info@appltop.com

SQL*Plus Buffer

When you enter a SQL command at the SQL*Plus

prompt, it is stored in the SQL buffer and it will

remain there until you enter a new command. If you

press [RETURN] before completing a line,

SQL*Plus will prompt you for a line number where

you can continue to enter the command. You

terminate the buffer by pressing [RETURN] again.

A semicolon, forward slash or entering RUN will

terminate and execute a SQL statement.

For example:
SQL> select *
 2 from emp;

or:
SQL> select *
 2 from emp
 3 /

or:
SQL> select *
 2 from emp
 3 [RETURN]
SQL> run

All of the above examples do the same thing.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 52

www.appltop.com
info@appltop.com

Editing SQL

Once you have entered some SQL, you may want to

execute the same code but with a few changes.

You could simply re-type the code with the changes,

or you could use some basic SQL*Plus commands to

edit what is stored in the SQL Buffer.

Editing Commands

Command Abbreviation Purpose

APPEND text A text Adds text to end of
current line

CHANGE c/old/new/ Changes old top new on
current line

CHANGE c/text/ Deletes text from current
line

CLEAR BUFFER cl buff Deletes all lines from
buffer

DEL Deletes current line

INPUT i Inserts an indefinite
number of lines

INPUT i text Inserts a line consisting
of text

LIST l Lists all lines in buffer

LIST n l n (or just
n)

Lists one line specified
by n

LIST m n l m n Lists from line m to n

ED Invokes editor with
contents of SQL Buffer

RUN r Displays and runs what
is in buffer

/ Runs what is in buffer

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 53

www.appltop.com
info@appltop.com

Editing SQL Examples

Assume you have the following statement in the

SQL buffer:
 SQL> SELECT ename
 2 , job
 3 FROM emp;

If you wanted to change this SQL to also select the

hiredate column after the job column, you would

enter the following:
SQL> 2
 2* , empno
SQL> input , hiredate

You would now have:
SQL> SELECT ename

 2 , job
 3 , hiredate
 4 FROM emp;

To remove line 2:
SQL> 2
 2* , job
SQL> del

To change hiredate to job:
SQL> 2
 2* , hiredate
SQL> c/hiredate/job/

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 54

www.appltop.com
info@appltop.com

Saving, Loading and Executing SQL

As well as using the SQL buffer to store SQL

commands, you can also store your SQL in files.

These files can be edited with your own editor; you

can then re-call and run these files as if you had just

typed the SQL commands directly into the SQL

buffer. Use the following commands from the

SQL*Plus prompt:

Command Description

SAVE filename Saves the current contents of the
SQL buffer to a file

GET filename Loads the contents of a file into the
SQL buffer

START filename Runs a file (can also use @file)
ED filename Invokes an editor to edit the file
EXIT Quits SQL*Plus

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 55

www.appltop.com
info@appltop.com

Summary

To summarise, we have seen the basic syntax for

the SELECT statement:
 SELECT [DISTINCT]{*,COLUMN [ALIAS]….}
 FROM TABLE
 WHERE CONDITION(S)
 ORDER BY {COLUMN|EXPRESSION}[ASC|DESC]};

• Use TABS for clarity

• Always place different clauses on different lines

We have covered the following:

• Basic SELECT clause

• The DISTINCT keyword

• Column Aliases

• The ORDER BY clause

• The WHERE clause

• Single/Multiple conditions

• Logical/SQL Operators

• Negating conditions

• Multiple conditions

• Operator Precedence

• Basic SQL*Plus commands

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 56

www.appltop.com
info@appltop.com

What is Next?

Having covered the most commonly used type of

SQL statement, the SELECT statement and also

briefly looked at SQL*Plus commands, we are now

ready to take a look at some of the more complex

features of SQL.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 57

www.appltop.com
info@appltop.com

1 Select all rows from the salgrade table.
2 Select all rows from the emp table.
3 Select all employees who have a salary between 1600 and
 3000.
4 List department number and department name in name

order from the dept table.
5 Display all the different job types, in reverse order.
6 List the names and hiredate of all clerks in department 20.
7 List all employees whose name begins with S.
8 Display the name, job, mgr and sal for all employee who

have a manager. Sort the list by sal descending.
9 List the name and total remuneration of all employees.
10 Display the name, salary, annual salary and commission of

all salespeople whose monthly salary is less then their
commission. The output should be sorted by salary, highest
first.

Lab 2

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 58

www.appltop.com
info@appltop.com

Section Three
Row & Group Functions

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 59

www.appltop.com
info@appltop.com

Row & Group Functions

So far, we have seen how to use the most

commonly used command in SQL, the SELECT

statement. Now that we have this basic knowledge

we can begin to cover more complex features of

SQL. In this section we will cover the following:

• Row Functions

• Group Functions & Grouping Data

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 60

www.appltop.com
info@appltop.com

Row Functions

Row functions are basically pre-defined or custom

built commands which can be used to modify the

data in a SQL statement. Row functions have the

following properties:

• They require arguments - these can be constants,

variables, column names or expressions

• Functions return a single value

• Functions act on each row returned by the query

• They can be used in SELECT, WHERE and ORDER

BY clauses

• They can be nested

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 61

www.appltop.com
info@appltop.com

Row Functions

There are many different kinds of row functions

available. They are:

• Character Functions

• Number Functions

• Oracle Dates, Date Arithmetic & Date functions

• Conversion functions & format Masks

• Functions that accept any kind of datatype

• Nesting Functions

We will take a brief look at some of the more

commonly used functions.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 62

www.appltop.com
info@appltop.com

Character Functions

We will look at the following character functions:

• LOWER

• UPPER

• INITCAP

• LPAD & RPAD

• SUBSTR

• INSTR

• LTRIM & RTRIM

• LENGTH

• TRANSLATE

• REPLACE

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 63

www.appltop.com
info@appltop.com

LOWER
Converts all characters to lower case

Syntax
LOWER(argument)

Example
SELECT LOWER('ORACLE') … = oracle

UPPER
Converts all characters to upper case

Syntax
UPPER(argument)

Example
SELECT UPPER('oracle') … = ORACLE

INITCAP
Forces the first letter of each word to be in upper

case

Syntax
INITCAP(argument)

Example
SELECT INITCAP('oracle') … = Oracle

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 64

www.appltop.com
info@appltop.com

LPAD & RPAD
Pads string to the left or right with a specified

character until a specified length is reached

Syntax
LPAD(string,len,pstring)
RPAD(string,len,pstring)

Arguments

string the string to be padded

len the length of the final string

pstring the string to use for padding

Example
SELECT LPAD('ORACLE',10,'-') … = ----ORACLE

Notes

If string is longer than len then string is

truncated to len characters.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 65

www.appltop.com
info@appltop.com

SUBSTR
The SUBSTR function is used to extract a portion of

a string.

Syntax
SUBSTR(string,pos,len)

Arguments

string the string to be extracted from

len starting position to extract

pstring length of extraction

Example
SELECT SUBSTR('ORACLE',2,3) … = RAC

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 66

www.appltop.com
info@appltop.com

INSTR
Returns the starting position of string within another

string.

Syntax
INSTR(string,search)
INSTR(string,search,pos,n)

Arguments

string The string to be searched

search The search string

pos Start position of search

n Finds the nth occurrence

Example
SELECT INSTR('Oracle','cle') … = 4

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 67

www.appltop.com
info@appltop.com

LTRIM & RTRIM
The ltrim and rtrim functions remove portions of a

string from the left or right

Syntax
LTRIM(string,rem)
RTRIM(string,rem)

Arguments

string The string you wish to modify

rem The string to be removed. All occurrences

are removed

Example
SELECT LTRIM('OOracle,'O') … = racle

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 68

www.appltop.com
info@appltop.com

LENGTH
The length function returns the number of

characters in a string.

Syntax
LENGTH(string)

Arguments

string The string you want the length of

Example
SELECT LENGTH('Oracle) … = 6

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 69

www.appltop.com
info@appltop.com

TRANSLATE
The TRANSLATE function searches through a string

for a character, and replaces it with another.

Syntax
TRANSLATE(string,from,to)

Arguments

string The string you wish to modify

from Searches for this character

to Replaces with this character

Example
SELECT TRANSLATE('hekko','k','l') … = hello

SELECT TRANSLATE('gekko','gk','hl') … = hello

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 70

www.appltop.com
info@appltop.com

REPLACE
The REPLACE function searches through a string for

another string and replaces all occurrences of it with

another string

Syntax
REPLACE(string,search,replace)
REPLACE(string,search)

Arguments

string The string you wish to modify

search Searches for this string

replace Replaces with this string. If replace is

omitted then search is removed from

string

Example
SELECT REPLACE('orafred','fred','cle') … = oracle

SELECT REPLACE('oracleab','ab') … = oracle

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 71

www.appltop.com
info@appltop.com

Number functions

We will look at the following number functions:

• ROUND

• TRUNC

• SIGN

• CEIL & FLOOR

• Mathematical functions

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 72

www.appltop.com
info@appltop.com

ROUND
The ROUND function rounds a number to a specified

number of decimal places.

Syntax
ROUND(number,n)

Arguments

number The number you want to round

n The number of decimal places: if n is

negative then the number to the left of

the decimal point is rounded

Example
SELECT ROUND(10.25,1) … = 10.3

SELECT ROUND(10.25,-1) … = 10

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 73

www.appltop.com
info@appltop.com

TRUNC
The TRUNC function truncates a number to a

specified number of decimal places.

Syntax
TRUNC(number,n)

Arguments

number The number you want to truncate

n The number of decimal places

Example
SELECT TRUNC(10.25,1) … = 10.2

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 74

www.appltop.com
info@appltop.com

SIGN
The SIGN function returns -1 if a number is

negative, 0 if a number is zero and +1 if a number

is positive.

Syntax
SIGN(number)

Example
SELECT SIGN(10),SIGN(-100) … = 1 and -1

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 75

www.appltop.com
info@appltop.com

CEIL & FLOOR
The CEIL and FLOOR functions return the largest or

smallest integers which are greater or smaller than

a specified number.

Syntax
CEIL(number)
FLOOR(number)

Example
SELECT CEIL(10.25) … = 11

SELECT FLOOR(10.25) … = 10

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 76

www.appltop.com
info@appltop.com

Mathematical Functions

There are more number functions available. Here is

a list of some of them:

Function Arguments Returns
power m n Raises m to the power n
mod m n Returns remainder of m

divided by n
abs m Returns absolute value of m
sqrt m Square root on m
log m n Logarithm, base m of n
sin n Sine of n
sinh n Hyperbolic sine of n
tan n Tangent of n
tanh n Hyperbolic tangent on n
cos n Cosine of n
cosh n Hyperbolic cosine of n
exp n e raised to the nth power

where e=2.71828183
ln n Natural logarithm on n,

where n is greater than zero

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 77

www.appltop.com
info@appltop.com

Oracle Dates

Dates in Oracle are stored as a number which

represents the following:

• Century

• Year

• Month

• Day

• Hours

• Minutes

• Seconds

The default display format is DD-MON-RR (or DD-

MON-YY) which represents a 2 digit day, followed by

a 3 character month, and ending in a 2 digit year:

for example, 10-JUL-99.

Current Date & Time

There is a special pseudo column available in Oracle

called SYSDATE. This returns current date and

time, for example:
 SELECT SYSDATE …

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 78

www.appltop.com
info@appltop.com

Date Arithmetic

Arithmetic operators can be performed on dates.

The following table describes how this works:

Operation Result Type Description
date + number date Adds number of

days to date
date - number date Subtracts number

of days from date
date - date number of days Subtracts one

date from another
date + number/24 date Adds number of

hours to date

Date Arithmetic Examples

To find the date 10 days ago:
SELECT SYSDATE-10
FROM dual;

The above example SELECTs from a dummy table

called �dual� - this is simply a table containing a

single column and a single row. It is useful to

SELECT from when you want a single row to be

returned to allow you to use a function or pseudo

column.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 79

www.appltop.com
info@appltop.com

Date functions

We will look at the following Date functions:

• MONTHS_BETWEEN

• ADD_MONTHS

• NEXT_DAY

• LAST_DAY

• ROUND

• TRUNC

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 80

www.appltop.com
info@appltop.com

MONTHS_BETWEEN
This function returns the number of months

between two dates. The non-integer part of the

result represents a portion of a month.

Syntax
MONTHS_BETWEEN(date1,date2)

Example
SELECT MONTHS_BETWEEN(sysdate,sysdate-30) … = 1

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 81

www.appltop.com
info@appltop.com

ADD_MONTHS
This function adds a specified number of months to

a date.

Syntax
ADD_MONTHS(date,mon)

Arguments

date The date you are adding too

mon The number of months to add. mon can

be negative

Example
SELECT ADD_MONTHS(sysdate,2) …

would add 2 months to the current date

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 82

www.appltop.com
info@appltop.com

NEXT_DAY
The NEXT_DAY function is used to find the next

date of the specified day after a specified date.

Syntax
NEXT_DAY(date,day)

Arguments

date The starting date

day A string representing the day you are

looking for, i.e. Monday, Tuesday, etc.

Can also be given as a number where 1 is

Sunday and 7 is Saturday.

Example
SELECT NEXT_DAY(SYSDATE,'Monday') …

would return the first Monday after today's date.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 83

www.appltop.com
info@appltop.com

LAST_DAY
The LAST_DAY function is used to find the last day

of the month which contains a specified date.

Syntax
LAST_DAY(date)

Example
SELECT LAST_DAY(sysdate) …

would find the last day of the current month

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 84

www.appltop.com
info@appltop.com

ROUND (date version)
The ROUND function is used to round dates to the

nearest month or year.

Syntax
ROUND(date,what)

Arguments

date The date to be rounded

what Can either be MONTH or YEAR - if omitted

then time element is set to 12:00:00am

(useful for comparing dates with different

times).

Example
SELECT ROUND(sysdate,'YEAR') …

will return the first day of the current year

TRUNC

Very similar to the ROUND function, but TRUNC

effectively always rounds down.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 85

www.appltop.com
info@appltop.com

Conversion Functions

When you are selecting columns from a table,

specifying literals or using the results of functions,

you are working with specific datatypes. There will

be times when you need to mix and match

datatypes, and you do this using conversion

functions. We will cover the following conversion

functions:

• TO_CHAR

• TO_NUMBER

• TO_DATE

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 86

www.appltop.com
info@appltop.com

TO_CHAR
The TO_CHAR function is used convert a value into

a char, with or without a specified format.

Syntax
TO_CHAR(number)
TO_CHAR(number,format)
TO_CHAR(date)
TO_CHAR(date,format)

Arguments

number The number you want to convert to a char

date A date you want to convert to a char

format The format mask you wish to apply to the

resulting char. Many format masks are

available.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 87

www.appltop.com
info@appltop.com

Common Format Masks

Date Format Masks

Format Mask Meaning
YYYY,YYY,YY,Y Displays year in 4, 3, 2 or 1 digits
RR Returns a year according to the

last two digits of the current year
and the 2 digit year passed to the
to_char function

MON,MONTHS,MM 3 digit spelled month, full month
spelling or 2 digit month number

Q Quarter of year
DY,DAY,DDD,DD,D 3 letter spelled day, fully spelled

day, day of year, day of month or
day of week

WW,W Week of month or year

Time Format Mask

Format Mask Meaning
HH,HH12,HH24 Hour of day, Hours 1-12 or Hours

1-24
MI Minute
SS Second
SSSSS Seconds since midnight

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 88

www.appltop.com
info@appltop.com

Common Format Masks

Number Format Masks

Format Mask Meaning
9 Numeric position, number of 9's

determine width
0 Same as 9 except leading 0's are

displayed
$ Floating dollar sign
. Decimal point position specified

Examples of TO_CHAR

Convert a number to a char:
TO_CHAR(10)

Convert a date to a char, and display as

DD-MON-YYYY:
TO_CHAR(SYSDATE,'DD-MON-YYYY')

Convert a number to a char and display as a 5 digit

char:
TO_CHAR(number,'99999')

Convert a date to a char and display only the time:
TO_CHAR(SYSDATE,'HH:MI:SS')

List employee salaries as a char with some leading

text:
 SELECT 'Salary='||TO_CHAR(sal,'9990.00') …

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 89

www.appltop.com
info@appltop.com

TO_NUMBER
The TO_NUMBER function is used convert a char into

a number.

Syntax
TO_NUMBER(string)

Example
SELECT TO_NUMBER('10') …

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 90

www.appltop.com
info@appltop.com

TO_DATE
The TO_DATE function is used convert a char into a

date.

Syntax
TO_DATE(string)
TO_DATE(string,format)

Arguments

string The string to be converted

format The format mask you wish to apply to the

input string: this ensures that the string is

in a correct date format. If format is

omitted then the default date format

(usually DD-MON-RR) is used.

Example
SELECT TO_DATE('10-JUL-1999','DD-MON-YYYY') …

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 91

www.appltop.com
info@appltop.com

Functions That Accept Any Kind of

Datatype

We will look at the following functions:

• NVL

• GREATEST & LEAST

• DECODE

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 92

www.appltop.com
info@appltop.com

NVL
The NVL function returns a specified value if

another is NULL.

Syntax
NVL(value,new value)

Arguments

value The value you wish to check for null

new value Returns this if value is null

Examples
SELECT NVL(mgr,'No manager') …

SELECT NVL(comm,0) …

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 93

www.appltop.com
info@appltop.com

GREATEST & LEAST
These two functions return either the greatest or

least from a list of values.

Syntax
GREATEST(value1,value2, …)
LEAST(value1,value2, …)

Arguments

valuen Makes up list of values

Examples
SELECT GREATEST(10,20,50,40) …

will return 50, whereas
SELECT LEAST(10,20,50,40) …

will return 10

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 94

www.appltop.com
info@appltop.com

DECODE
The DECODE function is very powerful. It works like

an IF statement, but can be embedded within a SQL

statement.

Syntax
DECODE(value,
 , search1, result1
 [, search2, result2 . . .]
 , default)

Arguments

value The value to be evaluated

search The value to search for

result Returns value if a match is found

default Returns this if no match is found

Examples

To display a percentage based on salary grade:
SELECT DECODE(salgrade
 , 1,'15%'
 , 2,'10%'
 , 3,'8'
 , '5%') bonus …

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 95

www.appltop.com
info@appltop.com

Nesting Functions

There will be times when you need to perform two

or more functions on a single value. The second

function may depend on the result of the first, and

so on: you can do this kind of thing by nesting

functions.

As a simple example, let's say that you want to list

all employees, and that you want the manager

column to contain some readable text if it is null.

You might at first try:
 SELECT NVL(mgr,'NO MANAGER') ..

This would produce an error because the datatypes

do not match (mgr is a number, 'NO MANAGER' is a

char). The solution would be to convert mgr to a

char first:
 SELECT NVL(TO_CHAR(mgr),'NO MANAGER')) …

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 96

www.appltop.com
info@appltop.com

Group Functions

Single row functions act upon each row returned

from a query. Group functions, on the other hand,

act on sets of rows returned from a query. This set

can be the whole table or the table split into smaller

groups.

A table is split into smaller groups with the GROUP

BY clause. This appears after the WHERE clause in a

SELECT statement.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 97

www.appltop.com
info@appltop.com

Group Functions

There are many group functions available:

Function Value Returned
AVG(n) Returns average on n, ignoring nulls
COUNT(n|*) Returns number on non-null rows

using column n. If * is used then all
rows are counted

MAX(expr) Maximum value of expr
MIN(expr) Minimum value of expr
STDDEV(n) Standard deviation of n, ignoring nulls
SUM(n) Sum of n, ignoring nulls
VARIANCE(n) Variance of n, ignoring nulls

Notes

n can be prefixed with the keyword DISTINCT - this

will make the group function only work on unique

values of the column specified by n.

Examples of using group functions

To find total paid in salaries for all employees:
 SELECT SUM(sal) …

To find highest, lowest and average salary:
 SELECT MAX(sal), MIN(sal), AVG(sal) …

To find total paid in salaries for all employees in

department 20:
SELECT SUM(sal)
FROM emp
WHERE department = 20;

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 98

www.appltop.com
info@appltop.com

Grouping Data

You can split the data in a table into smaller groups,

you can then use Group Functions to return

summary information about each group. You split a

table using the GROUP BY clause.

The GROUP BY clause instructs the query to return

rows split into groups determined by the specified

columns. GROUP BY generally takes the following

form:
SELECT job
 , AVG(sal)
FROM emp
WHERE deptno = 20
GROUP BY job;

The above statement will return the average salary

for each job for employees who work in department

20. The data has been grouped by the job column,

the AVG group function has then returned summary

data based on all rows in the table that are in the

current group.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 99

www.appltop.com
info@appltop.com

Grouping Data

When grouping data, you should be aware of the

following:

• You are not restricted to a single column. You

can group by as many columns as you like, as

long as the columns you are grouping by are in

the SELECT clause

• Rows can be omitted from the grouped data by

using the WHERE clause

• Groups can be omitted from the results by using

the HAVING clause

• When grouping data and using group functions,

you must ensure all columns in the SELECT

clause that do not use group functions are

included in the GROUP BY clause, otherwise an

error will occur

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 100

www.appltop.com
info@appltop.com

Grouping Data - Omitting Groups

You can omit groups returned from a query which

use a GROUP BY clause by using the HAVING

clause. HAVING generally takes the form:
SELECT job
 , AVG(sal)
FROM emp
WHERE department = 20
GROUP BY job
HAVING AVG(sal) > 1000;

The above statement will return the average salary

for each job for employees who work in department

20 where the average salary is greater than 1000.

The HAVING clause can include anything that

appears in the SELECT clause. You generally

include group functions in the HAVING clause rather

than just column names, because if you had a

HAVING clause as follows:
 HAVING job <> 'CLERK'

this would correctly omit all CLERKS; but this is a

very inefficient way to do it, and by the time the

HAVING clause is evaluated, the rows with CLERKS

have already been retrieved. It would be much

better to omit CLERKS using the WHERE clause.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 101

www.appltop.com
info@appltop.com

Summary

In this section we have covered:

• Row Functions

• Row functions act on each row returned

• Character functions

• Number functions

• Oracle dates & date functions

• Conversion functions & format masks

• Functions that accept any datatype

• Nesting functions

• Group Functions & Grouping Data

• Group functions act on a group of rows

• Many different group functions

• Grouping Data

• Omitting groups

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 102

www.appltop.com
info@appltop.com

What is Next?

In the next section we take a look how to select

data from more than one table at a time. We cover

joins, set operators and subqueries.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 103

www.appltop.com
info@appltop.com

1 List all employees, give each a 15% pay increase and display

new salary always rounded down to the nearest whole
number. Display name, old salary and new salary.

2 List all employee names in upper and lower case, also
display the name with the first character in upper and the
rest in lower.

3 Create a list that displays the first 2 digits of the employee
name, followed by the empno, followed by the rest of the
name, display as a single column.

4 Generate the following output:
EMPLOYEES

Smith is 5 digits long
Allen is 5 digits long
Ward is 4 digits long
Jones is 5 digits long
Martin is 6 digits long
Blake is 5 digits long
.

5 Display the name, hiredate and number of whole months

each employee has been employed. Show the highest first.
6 List each employee name along with the salary if it is more

than 1500, if it is 1500 print 'On Target', if it is less than
1500 print 'Below 1500'.

7 Write a query that will display the day of the week for the
current date.

8 List the maximum, minimum and average salaries for all
employees.

9 List the total salary bill for each job type.
10 Display a count of how many CLERKS there are.
11 Find all departments that have more than 3 employees.

Lab 3

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 104

www.appltop.com
info@appltop.com

Section Four
Querying More Than One

Table

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 105

www.appltop.com
info@appltop.com

Querying More Than One Table

There will be times when you need to select data

from more than one table at a time. This section

covers all the basics of doing this, and we will cover:

• Joins

• Set Operators

• Subqueries

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 106

www.appltop.com
info@appltop.com

Joins

So far, any queries we've seen have been from a

single table at a time - but SQL allows you to query

many tables at the same time through the use of

joins. We will now cover some of the basics of

joining tables within a SELECT statement. We will

look at the following types of join:

• Product

• Equi join

• Non-equi join

• Outer join

• Self join

The WHERE clause is used to construct a join.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 107

www.appltop.com
info@appltop.com

Joins - Product

If you construct a SELECT statement which contains

information from two or more tables without

specifically linking any of the columns from one

table to the next, the resulting query would be what

is known as a product (sometimes referred to as a

Cartesian join). This basically means that ALL rows

from ALL tables are returned in EVERY combination.

So for example, lets say we have two tables - �emp�

with 14 rows and �dept� with 4 rows - and we

entered the following statement:
 SELECT dname,ename
 FROM emp,dept;

The above query would return all rows from both

tables in all combinations, resulting in a total of 56

rows being returned (14 * 4).

You will very rarely need to perform this kind of

query, but it is mentioned so that you are aware of

the result of a product join. If you unintentionally

create one then the results could be very different

to what you might expect: imagine 2 tables, with

over 1,000,000 rows each!!

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 108

www.appltop.com
info@appltop.com

Joins - Equi

An equi join is a join which directly links columns

from one table to another, or in other words, an

equi join joins tables where a column on one table is

equal to a column from another table. As an

example, let's say you have the following statement:
 SELECT ename,deptno
 FROM emp;

This is okay, but what if instead of displaying the

department number (deptno), you wanted to

display the department name. You would have to

create an equi join from the emp table to the dept

table:
 SELECT emp.ename,dept.dname
 FROM emp,dept
 WHERE dept.deptno = emp.deptno;

The above statement joins the emp and dept tables

using the deptno column, and in English the

statement reads: select the ename column from

the emp table and get the dname column from the

dept table, only select dept rows where the

deptno on dept is the same as the deptno on the

emp table.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 109

www.appltop.com
info@appltop.com

Table Aliases

As a rule, when selecting data from more than one

table, you should qualify the column names you use

with the table name. This removes any ambiguity if

there are duplicate column names across different

tables: you do this by prefixing a column name with

the table name followed by a dot (.):
 SELECT TABLE.COLUMN …

A better method of this is to use a table alias. A

table alias is very similar a column alias, in that it is

a method of renaming a table only for the purposes

of the query - you can then use this alias within

your query as if the table were actually called by the

alias. This can save a lot of typing, make SQL easier

to read and allowing for self joins (covered later).

The syntax for a table join is simple: just follow the

table name with the alias:
SELECT e.ename,d.dname

 FROM emp e,dept d
 WHERE e.deptno = d.deptno;

Qualifying column names can also improve

performance of your code because you are telling

the system exactly where to find the column.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 110

www.appltop.com
info@appltop.com

Joins - Non Equi

A non-equi join is used where a value (column) is

within a range of values rather than equal to a

specific value. As an example, the relationship

between the emp and salgrade table is an equi

join, in that no column on the emp table

corresponds directly to a column on the salgrade

table. The link between the two tables is that the

sal column on emp must be BETWEEN two values

found on salgrade.
 SELECT e.ename,e.sal.s.grade
 FROM emp e,salgrade s
 WHERE e.sal BETWEEN s.losal AND s.hisal;

The statement reads: select the ename and sal

columns from the emp table and get the grade

column from the salgrade table, only select

salgrade rows where the sal column on emp is

between the losal and hisal columns on

salgrade. As a general rule, when joining tables,

you need 'number of tables minus 1' join conditions,

so to join three tables you would require at least

two join conditions.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 111

www.appltop.com
info@appltop.com

Joins - Outer

An outer join allows you to join tables together and

still return rows even if one side of a condition is not

satisfied. For example, the dept table has 4

departments (10, 20, 30 and 40), and the emp table

has employees in all departments except 40, so if

you were to write some SQL to join the two tables

together using a standard equi-join, the row from

dept which does not appear in emp would not be in

the returned rows. You can use an outer join to get

around this problem.
 SELECT e.ename,d.dname
 FROM emp e,dept d
 WHERE d.deptno = e.deptno(+);

The (+) in the above statement creates an outer

join. It basically says: still return a row from dept

even if the join condition fails. When creating outer

joins, you must put the (+) on the side of the

condition where no data will be found - in this case,

when SQL has retrieved department 40 from dept,

it will not find any rows on emp for department 40,

but the dept row is still returned.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 112

www.appltop.com
info@appltop.com

Joins - Self

By using a self join with table aliases you can join a

table to itself. A self join basically allows you to

select from the same table more than once within

the same SQL statement - this is very useful if a

table has rows on it which relate to other rows on

the same table. For example, the emp table holds

employees, and each employee has a manager

(except the big boss). This manager is stored on

the same table: so, you would need a self join if

you wanted to create a statement that listed all

employee names along with their manager name.
 SELECT e.ename employee_name

, m.ename manager_name
 FROM emp e,emp m
 WHERE m.empno = e.mgr;

The above statement says: select the employee

name from emp, and call it employee_name, then

select the employee name again and call it

manager_name from emp where the employee

number (empno) is the same as the manager (mgr)

stored on the first record.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 113

www.appltop.com
info@appltop.com

Set Operators

We covered the concepts of Set Operators in the

introduction to Relational Databases at the start of

this course. So far we have covered:

• restriction with the WHERE clause

• projection with the SELECT clause,

• joins

• product

We will now cover:

• UNION

• INTERSECT

• MINUS

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 114

www.appltop.com
info@appltop.com

Set Operators

UNION, INTERSECT and MINUS set operators are

used when you need to construct two or more

queries and you want to see the results as if it were

a single query.

The queries you use could be totally different, i.e.

different tables, or they could be using the same

table but be using different WHERE or GROUP BY

clauses.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 115

www.appltop.com
info@appltop.com

Set Operators - UNION

The UNION set operator combines the results of two

or more queries and returns all distinct rows from all

queries. It takes the form:
 SELECT job
 FROM emp
 WHERE deptno=10
 UNION
 SELECT job
 FROM emp
 WHERE deptno=30;

The above statement would, first of all, select all

jobs from emp where the department is 10, then

select all jobs from emp where the department is

30. The results of both these queries are combined

and only distinct rows are returned.

UNION ALL

Instead of using UNION, you could use UNION ALL

which would return ALL rows from both queries.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 116

www.appltop.com
info@appltop.com

Set Operators - INTERSECT

The INTERSECT set operator combines the results

of two or more queries and returns only rows which

appear in BOTH queries. It takes the form:
 SELECT deptno
 FROM dept
 INTERSECT
 SELECT deptno
 FROM emp;

The above statement would first of all select all

rows from dept, then all rows from emp, and only

where the data is found in BOTH queries would the

data be returned. This is effectively saying: select

all department numbers where employees can be

found

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 117

www.appltop.com
info@appltop.com

Set Operators - MINUS

The MINUS set operator combines the results of two

or more queries and returns only rows that appear

in the first query and not the second. It takes the

form:
 SELECT deptno
 FROM dept
 MINUS
 SELECT deptno
 FROM emp;

The above statement would first of all select all

rows from dept, then all rows from emp - data

would be returned if it was found in the first query

and not the second. This is effectively saying:

select all department numbers which have no

employees.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 118

www.appltop.com
info@appltop.com

Set Operators - Rules

There are a number of rules you should follow when

using Set Operators:

• You must SELECT the same number of columns

in each query

• All corresponding columns MUST be of the same

datatype

• Duplicate rows are ALWAYS eliminated (except

when using UNION ALL)

• Column names are derived from the first query

• Queries are executed from top to bottom

• Can use multiple set operators at the same time

• Can include an ORDER BY at end of last query. A

useful way to specify columns in an ORDER BY is

by using the column position rather than the

name, for example, to sort the output from a Set

Operation by the first column:
SELECT deptno FROM dept
UNION
SELECT deptno FROM emp
ORDER BY 1;

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 119

www.appltop.com
info@appltop.com

Subqueries

A sub query is basically a SELECT statement within

another SELECT statement; they allow you to select

data based on unknown conditional values. A

subquery generally takes the form:
 SELECT column(s)
 FROM table(s)
 WHERE column(s) = (SELECT column(s)
 FROM table(s)
 WHERE condition(s));

The subquery is the part in bold and in brackets:

this part of the query is executed first, just once,

and its result is used in the main (outer) query.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 120

www.appltop.com
info@appltop.com

Single Row Subqueries

A single row subquery is the simplest form of sub

query. It returns a single row to the outer query

that in turn uses the result to complete itself.

For example, to find all employees who earn the

lowest salary in the company we could use a

subquery. If we think about what is needed first:

• we need to determine what the lowest salary is

• we need to select all employees who earn this

amount

The finished query would be as follows:
 SELECT ename,sal
 FROM emp
 WHERE sal = (SELECT MIN(sal)

 FROM emp);

The above statement executes the subquery first to

find the lowest salary and then it uses the single

row result of that query to find all employees who

earn that amount.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 121

www.appltop.com
info@appltop.com

Single Row Subqueries

As another example, let's say we wanted to find all

employees who have the same job as BLAKE:
 SELECT ename,job
 FROM emp
 WHERE job = (SELECT job

 FROM emp
 WHERE ename = 'BLAKE');

The above statement executes the subquery first to

find what job BLAKE has, and then it uses the single

row result of that query to find all employees who

have the same job.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 122

www.appltop.com
info@appltop.com

Multiple Row Subqueries

A subquery can return more than one row, but you

must use a multi-row comparison operator (such as

IN) in the outer query or an error will occur:
 SELECT ename,sal,deptno
 FROM emp
 WHERE (deptno,sal)

 IN (SELECT deptno,MIN(sal)
 FROM emp
 GROUP BY deptno);

The above statement executes the subquery first to

find the lowest salary in each department (by using

a GROUP BY), then it uses each row returned from

that query to find all employees who earn that

amount in each department.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 123

www.appltop.com
info@appltop.com

Multiple Row Subqueries

ANY/SOME Operator

The ANY (SOME) operator compares a value to

EACH row returned from the subquery.
 SELECT ename,sal,job,deptno
 FROM emp
 WHERE sal > ANY

 (SELECT DISTINCT SAL
 FROM emp
 WHERE depton = 30);

The above statement executes the subquery first to

find all distinct salaries in department 30, and the >

ANY part of the outer query says where the sal

column in greater than ANY of the rows returned by

the subquery. This effectively says: list all

employees whose salary is greater than the lowest

salary found in department 30.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 124

www.appltop.com
info@appltop.com

Multiple Row Subqueries

ALL Operator

The ALL operator compares a value to ALL rows

returned from the subquery.
 SELECT ename,sal,job,deptno
 FROM emp
 WHERE sal > ALL

 (SELECT DISTINCT SAL
 FROM emp
 WHERE deptno = 30);

The above statement executes the subquery first to

find all distinct salaries in department 30, the > ALL

part of the outer query says where the sal column is

greater than ALL of the rows returned by the

subquery. This effectively says: list all employees

who earn more than everyone in department 30.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 125

www.appltop.com
info@appltop.com

Subqueries

When constructing subqueries you should be aware

of the following:

• ORDER BY can appear in the outer query only

• You can nest subqueries to a level of 255 (you

never would!)

• Subqueries can be used with the HAVING clause,

for example, to list the departments which have

an average salary bill greater than the average

salary bill for department 30:
SELECT deptno,AVG(sal)
FROM emp
GROUP BY deptno
HAVING AVG(sal) >
 (SELECT AVG(sal)
 FROM emp
 WHERE deptno=30);

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 126

www.appltop.com
info@appltop.com

Correlated Subqueries

A correlated subquery is a way of executing a

subquery once for each row found in the outer

query. A correlated subquery works as follows:

1. Get a candidate row from outer query

2. Execute subquery using candidate row data

3. Use values from subquery to either include or

exclude candidate row

4. Continue until no more candidate rows are found

in the outer query.

A correlated subquery is identified by the use of an

outer query column within the subquery. They are

useful when you need the subquery to return

different results based on the outer query.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 127

www.appltop.com
info@appltop.com

Correlated Subqueries

As an example, let�s say we wanted to list all

employees who earn a salary greater than the

average for their department. A standard subquery

would not work because the rows returned from the

subquery will not be related (correlated) to the rows

in the outer query. Using a correlated subquery you

would have something like:
 SELECT empno,ename,sal,deptno
 FROM emp e
 WHERE sal > (SELECT avg(sal)
 FROM emp
 WHERE deptno = e.deptno);

The above query says: select all employees as

candidate rows, then find the average salary for the

current department, using this average, either

include or exclude the candidate row.

The key to this working is the table alias used in the

outer query - we need to ensure the emp table is

called something different in both queries, otherwise

we would not be able to link the columns together.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 128

www.appltop.com
info@appltop.com

Correlated Subqueries

The EXISTS Operator

You can use the EXISTS operator with a correlated

subquery: this is used to determine if any rows are

returned from the subquery. If any are returned

then the condition is true and the row in the outer

query is returned. For example, to select all

employees who manage someone,�
 SELECT empno,ename,job,deptno
 FROM emp e
 WHERE EXISTS (SELECT 'FOUND A ROW'
 FROM emp
 WHERE emp.mgr = e.empno);

The above query says: select all employees as

candidate rows, then find an employee whose

manager is the employee in the outer query, and if

an employee was found in the subquery then return

the row in the outer query.

NOT EXISTS

You can use NOT EXISTS operator to check if NO

rows are returned from the subquery. If you used a

NOT EXISTS in the above example, you would get

all employees who do not manage anyone.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 129

www.appltop.com
info@appltop.com

Summary

In this section we have covered a lot of ground: we

have looked at some of the more complex types of

queries. We briefly covered ways in which you can

select data from more than one table at a time.

• Joins - Product, Equi, Non-equi, Outer and Self

• Set Operators - UNION, INTERSECT and MINUS

• Subqueries - Single Row, Multi Row and

Correlated

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 130

www.appltop.com
info@appltop.com

What is Next?

In the next section we take a quick look at using

DML and DDL to modify data within the database,

and how to change the structure of the database.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 131

www.appltop.com
info@appltop.com

1. List all employee names along with the name of the

department they work in.
2 List all employee names along with the department name,

department number and the location.
3 Produce a list of employees with their salary and salary

grade.
4 Display departments with no employees.
5 List all employees, along with their managers name.
6 The query produced for question 5 will probably not have

listed employees who have no manager, so change the
query to show these. Display 'NO MANAGER' if no manager
is found.

7 Find all employees who earn the highest for each job type.
8 List all employees with a * against the mostly recently hired

one (use the UNION operator).

Lab 4

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 132

www.appltop.com
info@appltop.com

Section Five
Modifying Data & the

Database

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 133

www.appltop.com
info@appltop.com

Modifying Data & the Database

So far, all of the SQL we have looked at has been to

do with querying data, using the SELECT

statement. Now we are ready to take a look at other

types of SQL commands, DML and DDL. DML is

SQL's Data Manipulation Language: it is used to

modify data held within the database. DDL or Data

Definition Language is used to modify the structure

of the database. In this section we cover the

following:

• Using DML

• Inserting new data

• Updating existing data

• Deleting data

• Transaction Processing

• Using DDL

• Tables

• Indexes

• Synonyms

• Privileges

• Views & Sequences

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 134

www.appltop.com
info@appltop.com

Using DML
Inserting New Data

If you need to create new data within the database,

you use the INSERT statement. This allows you to

create new rows on any table (as long as you have

the correct privileges).

INSERT

SQL statement used to insert rows into the database

Syntax
INSERT INTO table [(column,column,……)]

VALUES (value,value,…..);

Example
INSERT INTO dept (deptno,dname,loc)

VALUES (50,'MARKETING','DAVENTRY');

The above statement says: insert a new row into

the dept table, set the deptno column to 50,

dname to MARKETING and loc to DAVENTRY.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 135

www.appltop.com
info@appltop.com

Inserting New Data

The INSERT statement can be used in a number of

different ways:

• Specify only required columns - If you want to

insert a row but do not want to insert values into

certain columns, then simply omit the column

name from the INSERT statement (unless there

is a NOT NULL constraint on the column).

• Specify no columns at all - If you want to always

insert a value into all columns, then you do not

need to give the column names - just ensure the

VALUES clause matches the table exactly (not

recommended).

• You can insert rows into a table based on rows

from another table.

• Almost anything that can appear in a SELECT

clause of a SELECT statement can also appear in

the VALUES clause of the INSERT statement.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 136

www.appltop.com
info@appltop.com

Inserting New Data - Examples

To insert a row into the dept table only specifying 2

columns:
 INSERT INTO dept (deptno,loc)
 VALUES (60,'DAVENTRY');

To insert a row using rows from another table:
 INSERT INTO dept(deptno,dname)
 (SELECT deptno,dname
 FROM old_dept);

To insert a row using rows from another table and

utilising a row function:
 INSERT INTO dept (deptno,dname)
 (SELECT deptno,INITCAP(dname)
 FROM old_dept);

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 137

www.appltop.com
info@appltop.com

Using DML
Updating Existing Data

If you need to change some data within the

database, you use the UPDATE statement. This

allows you to change a single row or many rows at

the same time (as long as you have the correct

privileges).

UPDATE

SQL statement used to update rows in the database

Syntax
UPDATE table [alias]
SET column [,column…] =

 {expression,subquery}
 [WHERE condition];

Example
UPDATE emp
SET sal = sal * 1.1
WHERE job = 'CLERK';

The above statement says: find all employees

whose job is CLERK and set their salary to itself

multiplied by 1.1 - or in other words, give all clerks

a 10% pay increase.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 138

www.appltop.com
info@appltop.com

Updating Existing Data

When using the UPDATE statement, you should be

aware of the following:

• If the WHERE clause is omitted then ALL rows on

the table will be updated.

• The WHERE clause can contain anything that

would normally appear in the WHERE clause for

the SELECT statement.

• It is possible to use subqueries and correlated

subqueries in the SET clause.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 139

www.appltop.com
info@appltop.com

Updating Existing Data - Examples

To give the employee SCOTT a new job, change of

department and a pay increase:
 UPDATE emp
 SET job = 'SALESMAN'
 , sal = sal * 1.25
 , deptno = 40
 WHERE ename = 'SCOTT';

To set the NUMBER_OF_EMPLOYEES on the dept

table (using a correlated subquery):
 UPDATE dept d
 SET number_of_employees =
 (SELECT count(*)
 FROM emp e
 WMERE e.deptno = d.deptno)

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 140

www.appltop.com
info@appltop.com

Using DML
Deleting Data

If you need to delete data within the database, you

use the DELETE statement. This allows you to

delete a single or many rows at once (as long as

you have the correct privileges).

DELETE

SQL statement used to delete rows from the

database

Syntax
DELETE [FROM] table
[WHERE condition];

Example
DELETE emp
WHERE job = 'MANAGER';

The above statement says: delete all rows from the

emp table where the job column is MANAGER - or in

other words, give all manager the boot.

It is also possible to use subqueries with the

DELETE statement.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 141

www.appltop.com
info@appltop.com

Using DML
Deleting Data

Another way to remove all the data from a table is

using the TRUNCATE TABLE command.

TRUNCATE TABLE

SQL statement used to remove ALL rows from a

table

Syntax
TRUNCATE TABLE table

Example
TRUNCATE TABLE emp;

The TRUNCATE TABLE command effectively flags

the table internally as empty without actually

deleting any rows. It is VERY fast and is useful for

clearing out tables with many hundreds of

thousands or million of rows.

Truncates are DDL, not DML. A truncate moves the High Water Mark of the table

back to zero. No row-level locks are taken, no redo or rollback is generated. All

extents except those defined in the MINEXTENTS parameter are de-allocated from

the table.

By resetting the High Water Mark, the truncate prevents reading of any table's data,

so they it has the same effect as a delete, but without the overhead. There is,

however, one aspect of a Truncate that must be kept in mind. Because a Truncate

is DDL it issues a COMMIT before it acts and another COMMIT afterward so no

rollback of the transaction is possible.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 142

www.appltop.com
info@appltop.com

Transaction Processing

Oracle ensures the consistency of data through the

use of transactions. Transactions give you more

control when changing data and will ensure data

consistency in the event of a system failure.

A transaction can be thought of as a single

consistent change to the database which may

directly relate to some kind of business

functionality: this change to the database may

consist of a single or multiple DML statements. For

example, in a banking system, a transfer funds

transaction would involve the transfer of funds out

of one account and then further transfer into

another account - this would require two DML

statements but is considered a single transaction.

Transaction processing allows you to perform all the

DML you need before committing the changes to the

database. This ensures that both of DML statements

are always complete and in the event of a failure,

none of the DML statements would complete.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 143

www.appltop.com
info@appltop.com

Transaction Processing

There are two types of transaction:

• DML - holds a number of DML statements

• DDL - holds a single DDL statement

A transaction begins when:

• A DDL command is issued

• First DML statement issued after a COMMIT

A transaction ends when:

• A COMMIT or ROLLBACK command is issued

• DDL command is issued

• You exit SQL*Plus

• System Failure (auto-rollback)

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 144

www.appltop.com
info@appltop.com

Transaction Processing
The COMMIT command

Whenever you issue a DML statement which

changes the data held within the database, you are

not actually changing the database. You are

effectively putting your changes into a buffer, and

to ensure this buffer is flushed and all your changes

are actually in the database for others to see, you

must first commit the transaction. You can do this

with the COMMIT statement.

Syntax
 COMMIT [WORK];

Example
 UPDATE dept
 SET dname = initcap(dname);
 COMMIT;

The above code will update all dept rows then

commit the changes to the database.

After the COMMIT command has run, the following

is true:

• Your changes are in the database and permanent

• The current transaction has ended

• Any locks are released

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 145

www.appltop.com
info@appltop.com

Transaction Processing
The ROLLBACK command

If you have started a transaction by issuing a

number of DML statements, but you then decide

you want to abort the changes and start again, you

need to use the ROLLBACK statement.

Syntax
 ROLLBACK [WORK];

ROLLBACK [WORK] TO SAVEPOINT_NAME;

Example
 UPDATE dept
 SET dname = initcap(dname);

 ROLLBACK;

The above code will update all dept rows then

rollback the changes: this will effectively be as if you

had never issued the UPDATE statement.

After the ROLLBACK command has run, the

following is true:

• All of your changes will be lost

• The current transaction has ended

• Any locks are released

We cover the SAVEPOINT part next.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 146

www.appltop.com
info@appltop.com

Transaction Processing
The SAVEPOINT command

You can split a transaction up into smaller portions

using the SAVEPOINT command. SAVEPOINT

allows you to specify markers within a transaction,

and these markers can be easily rolled back to if

needed.

Syntax
 SAVEPOINT savepoint_name;

Example
 UPDATE dept
 SET dname = initcap(dname);
 SAVEPOINT done_dept;

UPDATE emp
SET sal = sal * 1.1;
ROLLBACK TO done_dept;
COMMIT;

The above code will update all dept rows, create a

savepoint and then update all emp rows. Then a

ROLLBACK is issued, only back to the last

SAVEPOINT - this will effectively discard your

changes to the emp table, leaving only the changes

to the dept table; the final command will COMMIT

any changes left to do - in this case, just the dept

changes.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 147

www.appltop.com
info@appltop.com

Transaction Processing

Keep in mind the following about transaction

processing:

• Other database users will not see your changes

until you COMMIT them.

• An uncommitted transaction is one which holds

locks on the data, for example, if you update a

single emp row without committing, other people

will still see the unchanged emp row but will not

be able to change it themselves until you either

issue a COMMIT or ROLLBACK.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 148

www.appltop.com
info@appltop.com

Using DDL

DDL is a subset of SQL commands that allows you

to make changes to the structure of the database.

We will briefly cover the following kinds of database

objects:

• Tables

• Indexes

• Synonyms

• Privileges

• Views

• Sequences

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 149

www.appltop.com
info@appltop.com

Using DDL

When working with any kind of object within the

database, there are usually three basic commands

that apply to all objects. These are:

• CREATE - used to create an object

• ALTER - used to alter/change an object

• DROP - used to remove an object

Column Types/Datatypes

All columns on a table must be given a datatype, as

this determines what kind of data the column can

hold. A few of the more common data types are:

Datatype Purpose
NUMBER Holds number data of any precision
NUMBER(w) Holds number data of w precision
NUMBER(w,s) Holds number data of w precision and

s scale, i.e. 10,2 is a number upto 10
digit in length, with 2 digits after the
decimal point.

VARCHAR2(w) Holds variable length alphanumeric
data upto w width.

CHAR(w) Holds fixed length alphanumeric upto
w with.

DATE Holds data/time data

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 150

www.appltop.com
info@appltop.com

Using DDL - Tables
The CREATE TABLE Command

To create a new table within the database, you use

the CREATE TABLE command. In its most basic

form, the CREATE TABLE command has the

following form:

CREATE TABLE

Command used to create tables

Syntax
 CREATE TABLE table-name
 (column_name type(size)
 , column_name type(size) . . .);

Example
 CREATE TABLE dept
 (deptno NUMBER
 , dname VARCHAR2(12)
 , loc VARCHAR2(12));

The above statement will create a table called

dept, with 3 columns: a number column called

deptno, a 12 digit VARCHAR2 column called dname

and another 12 digit VARCHAR2 column called loc.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 151

www.appltop.com
info@appltop.com

Using DDL - Tables
The CREATE TABLE Command

When creating a table, you can ensure that no NULL

values are stored in a column by using the NOT

NULL constraint - for example, to create the dept

table and to ensure no NULL values are ever

inserted into the deptno column:
 CREATE TABLE dept
 (deptno NUMBER NOT NULL
 , dname VARCHAR2(12)
 , loc VARCHAR2(12));

DESCRIBE - SQL*Plus command

You can list columns on a table from SQL*Plus using

the describe command (or desc) - for example:
 SQL> desc dept
 Name Null? Type
 --------------------- -------- ----
 DEPTNO NOT NULL NUMBER(2)
 DNAME VARCHAR2(14)
 LOC VARCHAR2(13)

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 152

www.appltop.com
info@appltop.com

Using DDL - Tables
The DROP TABLE Command

A table can be removed from the database using the

DROP TABLE command.
 DROP TABLE dept;

Be aware that once a table has been dropped, it

cannot be recovered. Also, ALL data on the table is

removed.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 153

www.appltop.com
info@appltop.com

Using DDL - Tables
The ALTER TABLE Command

A table can be altered using the ALTER TABLE

command. This command allows you to do many

things - we will only look at how you can add extra

columns to a table. Let's say you want to add the

column 'comments' to the emp table:
 ALTER TABLE emp

ADD (COMMENTS VARCHAR2(80));

This will add the column COMMENTS to the emp

table.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 154

www.appltop.com
info@appltop.com

Using DDL - Indexes

An index is a data structure within the database that

allows you to provide quick access to data on a

table via a particular column or columns. It can also

serve as a method of ensuring no duplicate records

can be stored on a table. For example, a common

column to use when querying the emp table is

empno: this column should also be unique since no

two employees should have the same number.

When you query the emp table (for example) using

the empno column, if no index was present on this

column then the database would have to

sequentially go through all records on the table until

the required one was found. An index would

provide a faster method of querying this table.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 155

www.appltop.com
info@appltop.com

Using DDL - Indexes
The CREATE INDEX Command

You create indexes with the CREATE INDEX

command. In it most basic form, it is as follows:
 CREATE [UNIQUE] INDEX index_name

ON table_name
 (column [,column . . .]);

Examples

To create a unique index called emp_idx01 on the

emp table using the empno column:
 CREATE UNIQUE INDEX emp_idx01
 ON emp
 (empno);

To create a non-unique index on the emp table

using the ename column:
CREATE UNIQUE INDEX emp_idx01

 ON emp
 (empno);

To create a non-unique index on the emp table

using the ename and hiredate columns:
CREATE UNIQUE INDEX emp_idx01

 ON emp
 (empno,diredate);

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 156

www.appltop.com
info@appltop.com

Using DDL - Synonyms
The CREATE SYNONYM Command

Within an Oracle Database, there is an object called

user. This is effectively a space within the database

for a particular user. The user of that database user

would create tables belonging to this user. If

another user wanted to access these tables, they

would normally have to qualify the table name with

the user name first - for example, if user Bob

creates a table called emp, and user Dave wanted

to list all rows on Bob’s emp table, he would have

to enter:
 SELECT *
 FROM bob.emp;

A much better method of accessing the table would

be to only have to specify the table name. You can

do this if a synonym under the Dave user exists.
 CREATE SYNONYM emp
 FOR bob.emp;

Now dave can see bob’s emp table by just

entering:
SELECT *

 FROM emp;

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 157

www.appltop.com
info@appltop.com

Using DDL - Privileges
The GRANT/REVOKE Commands

As with synonyms, if Bob has a table called emp and

Dave wants to query it - or even insert, update or

delete it - Dave must first be given the correct

privileges to allow him to do this. Many privileges

exist, and the most common ones are SELECT,

INSERT, UPDATE and DELETE - so to give Dave

SELECT and INSERT privileges on Bobs' emp

table, Bob would have to enter:
 GRANT SELECT,INSERT ON emp TO dave;

A privilege can be removed with the REVOKE

command, to remove Dave's INSERT privilege on

Bobs' emp table:
 REVOKE INSERT ON emp FROM dave;

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 158

www.appltop.com
info@appltop.com

Using DDL - Views
The CREATE VIEW Command

Let�s say you have constructed a very useful and

complex query and another user says, "I could do

with the same kind of query". You could just give

them the code and let them run it themselves, but a

better method is to create a database view based

on your query. A view is basically a virtual table

which is made up of the rows that your query

returns. For example, if you have a query that lists

employee names along with department names, you

could create a view as follows:
 CREATE VIEW emp_dept
 AS
 SELECT e.ename employee_name
 , d.dname department_name
 FROM emp e
 , dept d
 WHERE d.deptno = e.deptno;

The above statement would create a view called

emp_dept which would contain two columns,

employee_name and department_name. You

could now access this view as if it were a table:
 SELECT *
 FROM emp_dept;

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 159

www.appltop.com
info@appltop.com

Using DDL - Views
The DROP VIEW Command

A view can be removed with the DROP VIEW

command. For example:
 DROP VIEW emp_dept;

The above statement would remove a view called

emp_dept.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 160

www.appltop.com
info@appltop.com

Using DDL - Sequences
The CREATE SEQUENCE Command

Assume that you have a new table; it contains a

column called sequence_number, and you always

want to populate this column the a sequential

number. A good way to do this is to create a

sequence, then reference the sequence in your

INSERT statement. A sequence is simply an object

within the database that returns a number, usually

the next in sequence. To create a sequence, use the

CREATE SEQUENCE command. In its most basic

form, it has the following syntax:
 CREATE SEQUENCE sequence_name
 INCREMENT BY n
 START WITH m;

So, to create a sequence called my_seq01 which

starts at 100 and increases by 10 each time:
 CREATE SEQUENCE my_seq01
 INCREMENT BY 10
 START WITH 100;

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 161

www.appltop.com
info@appltop.com

Using DDL - Sequences
Referencing a Sequence

You have created a sequence called my_seq01: you

can reference it in two ways, the first being by using

the NEXTVAL pseudo column to get the next

number:
 SELECT my_seq01.NEXTVAL
 FROM dual;

This would return 100; if you ran this SQL again it

would return 110, and so on.

You can also retrieve a sequence's current value

without increasing its value with the CURRVAL

pseudo column:
 SELECT my_seq01.CURRVAL

FROM dual;

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 162

www.appltop.com
info@appltop.com

Using DDL - Sequences
The DROP SEQUENCE Command

A sequence can be removed with the DROP

SEQUENCE command. For example:
 DROP SEQUENCE mu_seq01;

The above statement would remove a sequence

called my_seq01.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 163

www.appltop.com
info@appltop.com

Summary

In this section we have covered both how to use

DML and DDL, and specifically we have seen:

• Insert, Update and Delete data

• Transaction Processing

• Creating, deleting and altering Tables

• Indexes

• Synonyms

• Privileges

• Views

• Sequences

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 164

www.appltop.com
info@appltop.com

What is Next?

As far as SQL is concerned, we have pretty much

finished: all that is left to do now is take a quick

look at some features of SQL*Plus.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 165

www.appltop.com
info@appltop.com

1 Write a SQL statement to give all employees a 25% pay

increase, commit your changes and view the table.
2 Give all employees who work in NEW YORK an additional 5%

pay increase, rollback your changes and view the table.
3 Create a new department called I.T located in ENGLAND.
4 Remove the department you created in question 3.
5 Create a sequence called EMPINFO_SEQ, start it at 10 and

increment it by 1.
6 Create a new table called EMPLOYEE_INFO, using the

following table as a guide:

Column Name Datatype & Size
INFO_ID NUMBER
EMPNO NUMBER
INFO_DATE DATE
INFO VARCHAR2 80

7 Insert a row into the new table, set INFO_ID to be the next

value from the sequence you created, set EMPNO to a valid
employee number, INFO_DATE to today's date and enter
some text into INFO.

8 Create a synonym called einfo for your new table.
9 Select all rows from your new table using the synonym;
10 Remove the new synonym and table.

Lab 5

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 166

www.appltop.com
info@appltop.com

Section Six
More SQL*Plus

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 167

www.appltop.com
info@appltop.com

More SQL*Plus

We have already seen a little of SQL*Plus: we will

now cover a little more on how to use SQL*Plus and

what it can do. We will briefly cover:

• SQL*Plus Variables

• Basic SQL*Plus Reporting

• Saving Output to a file

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 168

www.appltop.com
info@appltop.com

SQL*Plus Variables

A SQL*Plus variable is basically a way of storing a

value in a temporary space. This value can then be

referenced from within a SQL statement. We will

take a very quick look at:

• Ampersand substitution variables

• Double ampersand substitution variables

There are other types of SQL*Plus variables

available which are not covered on this course.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 169

www.appltop.com
info@appltop.com

SQL*Plus Variables
Ampersand Variables

A single ampersand substitution variable is a

method of asking the user for input before some

SQL executes, then substituting the value entered

for the reference to the variable within your SQL.

Simply prefix a variable name with a single

ampersand and SQL*Plus will prompt you to enter a

value at runtime. For example:
 SELECT *
 FROM emp
 WHERE deptno = &department_number;

If you run this SQL, before anything is done, you

will be asked the following:
 Enter value for department_number:

You now enter a valid value, and SQL*Plus will

substitute &department_number for whatever you

entered.

The value entered into a single ampersand variable

is not remembered - this means if you execute the

same SQL again, you will be asked for a value

again.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 170

www.appltop.com
info@appltop.com

SQL*Plus Variables
Double Ampersand Variables

A double ampersand substitution variable is almost

the same as a single ampersand variable. The only

difference is that the value is remembered, so you

only need enter a value once.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 171

www.appltop.com
info@appltop.com

Basic SQL*Plus Reporting

The results of a query are displayed in a very simple

and plain manner. SQL*Plus allows you to add

basic formatting to this output to create simple, but

effective reports. SQL*Plus reporting is quite a

complex topic and beyond the scope of this course,

therefore we will only cover the most basic areas;

this should be enough to give you a feel for what

can be achieved with SQL*Plus. We will cover:

• Adding a title to the page

• Setting break points

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 172

www.appltop.com
info@appltop.com

Basic SQL*Plus Reporting
Adding a Page Title

You can use the SQL*Plus TTITLE command to add

a title to a page. Simply enter
 SQL> TTITLE 'my title'

before you enter your SQL, and the report will be

headed with whatever you set the title to.

You can also add a footer to a page with the

BTITLE command. For example:
 SQL> BTITLE 'my footer'

Example
 SQL> TTITLE 'Employee List'
 SQL> SELECT * FROM emp;

Sun Jul 18 page 1

 Employee List

 EMPNO ENAME

--------- ----------

 7369 SMITH

 7499 ALLEN

 7521 WARD

 7566 JONES

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 173

www.appltop.com
info@appltop.com

Basic SQL*Plus Reporting
Setting A BREAK point

If you have a query that selects some repeating

data, or you want to section out different rows, you

can set up a break point to do this. For example, if

you have a query which simply selects the deptno

and ename columns from emp, you may want to

section out rows for each department, and also only

print the department each time it changes.

Example Before
DEPTNO ENAME
--------- --------
 10 CLARK
 10 KING
 10 MILLER
 20 SMITH
 20 ADAMS

If you first entered:
 SQL> BREAK ON deptno SKIP 1

You would have:
DEPTNO ENAME
--------- --------
 10 CLARK
 KING
 MILLER

 20 SMITH
 ADAMS

The BREAK command says: set up a BREAK point

on deptno and skip a line each time it changes.

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 174

www.appltop.com
info@appltop.com

Basic SQL*Plus Reporting
Saving Output to a File

You can save the output from SQL*Plus using the

spool command: you simply enter
SQL> spool <file>

before you execute your SQL statement - <file> can

be any valid filename, and if you omit the file

extension then it will default to .lst. Once you

have entered the spool command, ALL SQL*Plus

output is saved to the file - to switch off spooling

without leaving SQL*Plus, just enter:
 SQL> spool off

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 175

www.appltop.com
info@appltop.com

Summary

SQL*Plus is a very powerful tool, and it can do

much more than described on this course: but, you

should now have an idea as to what can be

achieved using SQL*Plus. We briefly covered:

• SQL*Plus variables

• Basic SQL*Plus Reporting

• Saving Output to a File

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 176

www.appltop.com
info@appltop.com

What is Next?

This is the end of the course; we have covered an

awful lot of topics in such as short space of time.

Don't be concerned if you haven't quite taken it all

in, as this course was really designed to give you a

taster of SQL and SQL*Plus. You should be

equipped with enough knowledge to make it easy to

further progress your knowledge in these areas.

I suggest you get to work with SQL and SQL*Plus as

soon as you can, read any documentation you can

on the subject, and you will be a fully fledged SQL

and SQL*Plus scripter/programmer in no time.

This course has also given you good grounding for

one of the follow-up courses:

 PL/SQL, Packages, Procedures and Triggers

This course covers Oracle's procedural extension to

SQL in the form of PL/SQL, a fully functional

programming language.

Good Luck!!

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 177

www.appltop.com
info@appltop.com

1 Create a query that lists all employees. Prompt for a job type

and only list employees in that job.
2 Ask for a column list, (columns separated by commas) then

list all employees, showing only those columns you entered
when asked.

3 Create a simple SQL*Plus report, it should have a title of
'Employees By Job' and list each job type with all employees
for that job, skip 1 line between jobs. Show job type,
employee number, employee name and hiredate.

Lab 6

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 178

www.appltop.com
info@appltop.com

Answers To Exercises

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 179

www.appltop.com
info@appltop.com

Answers To Exercises
Lab Exercise Answer

1 1 Double Click the SQL*Plus icon on the desktop. Login to the
database using the username and password supplied

 2 From the UNIX prompt enter, sqlplus
<username>/<password>

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 180

www.appltop.com
info@appltop.com

Answers To Exercises
Lab Exercise Answer

2 1 SELECT *
FROM salgrade;

 2 SELECT *
FROM emp;

 3 SELECT *
FROM emp
WHERE sal BETWEEN 1600 AND 3000;

 4 SELECT deptno
, dname
FROM dept
ORDER BY dname;

 5 SELECT DISTINCT job
FROM emp
ORDER BY job DESC;

 6 SELECT ename
, hiredate
FROM emp
WHERE job = 'CLERK'
AND deptno = 20;

 7 SELECT *
FROM emp
WHERE ename LIKE 'S%';

 8 SELECT ename
, job
, mgr
, sal
FROM emp
WHERE mgr IS NOT NULL
ORDER BY sal DESC;

 9 SELECT ename
, sal + NVL(comm,0) "Remuneration"
FROM emp;

 10 SELECT ename
, sal
, sal*12 "Annual Salary"
, comm
FROM emp
WHERE sal < NVL(comm,0)
ORDER BY sal DESC

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 181

www.appltop.com
info@appltop.com

Answers To Exercises
Lab Exercise Answer

3 1 SELECT ename
, sal
, ROUND(sal*1.15) new_sal
FROM emp;

 2 SELECT ename
, LOWER(ename)
, INITCAP(ename)
FROM emp;

 3 SELECT SUBSTR(ename,1,2)
|| TO_CHAR(empno)
|| substr(ename,3,LENGTH(ename)-2)
FROM emp;

 4 SELECT RPAD(INITCAP(ename),7,' ')
|| ' is '||TO_CHAR(LENGTH(ename))
|| ' digits long'
FROM emp

 5 SELECT
ename,hiredate,FLOOR(MONTHS_BETWEEN(SYSDATE,hiredate
)) months
FROM emp
ORDER BY months DESC;

 6 SELECT ename
, DECODE(SIGN(1500-sal)
 , 1,'BELOW 1500'
 , 0,'On Target'
 , sal) salary
FROM emp;

 7 SELECT TO_CHAR(SYSDATE,'DAY') Day
FROM dual;

 8 SELECT MAX(sal) max
, MIN(sal) min
, AVG(sal) avg
FROM emp;

 9 SELECT job
, SUM(sal) total
FROM emp
GROUP by job;

 10 SELECT COUNT(*)
FROM emp
WHERE job = 'CLERK';

 11 SELECT deptno,COUNT(*) employees
FROM emp
GROUP BY deptno
HAVING COUNT(*) > 3;

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 182

www.appltop.com
info@appltop.com

Answers To Exercises
Lab Exercise Answer

4 1 SELECT e.ename
, d.dname
FROM emp e
, dept d
WHERE d.deptno = e.deptno;

 2 SELECT e.ename
, e.deptno
, d.dname
, d.loc
FROM emp e
, dept d
WHERE d.deptno = e.deptno;

 3 SELECT e.ename
, e.sal
, g.grade
FROM emp e
, salgrade g
WHERE e.sal BETWEEN g.losal AND g.hisal;

 4 SELECT d.deptno
FROM dept d
WHERE NOT EXISTS
 (SELECT deptno
 FROM emp e
 WHERE e.deptno = d.deptno);

 5 SELECT e.ename
, m.ename
FROM emp e
, emp m
WHERE m.empno = e.mgr;

 6 SELECT e.ename
, NVL(m.ename,'NO MANAGER') manager
FROM emp e
, emp m
WHERE m.empno(+) = e.mgr;

 7 SELECT job,sal
FROM emp
WHERE (job,sal) IN
 (SELECT e.job,MAX(e.sal)
 FROM emp e
 GROUP BY job)

 8 SELECT '*'||ename name
, hiredate
FROM emp
WHERE hiredate = (SELECT MAX(hiredate)
 FROM emp)
UNION
SELECT ename name
, hiredate
FROM emp
WHERE hiredate <> (SELECT MAX(hiredate)
 FROM emp);

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 183

www.appltop.com
info@appltop.com

Answers To Exercises
Lab Exercise Answer

5 1 UPDATE emp
SET sal = sal * 1.25;
COMMIT;
SELECT ename
, sal
FROM emp;

 2 UPDATE emp
SET sal = sal * 1.05
WHERE deptno IN (SELECT deptno
 FROM dept
 WHERE loc = 'NEW YORK');
ROLLBACK;
SELECT ename
, sal
FROM emp;

 3 INSERT INTO dept VALUES (50,'IT','ENGLAND');

 4 ROLLBACK
or if you committed your work,..
DELETE dept
WHERE deptno = 50;

 5 CREATE SEQUENCE empinfo_seq
 START WITH 10
 INCREMENT BY 1;

 6 CREATE TABLE employee_info
(info_id NUMBER
, empno NUMBER
, info_date DATE
, info VARCHAR2(80));

 7 INSERT INTO employee_info VALUES
(empinfo_seq.NEXTVAL,7900,SYSDATE,'Some Info');

 8 CREATE SYNONYM einfo
 FOR employee_info;

 9 SELECT *
FROM einfo;

 10 DROP TABLE employee_info;

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 184

www.appltop.com
info@appltop.com

Answers To Exercises
Lab Exercise Answer

6 1 SELECT *
FROM emp
WHERE job = '&1';

 2 SELECT &1
FROM emp;

 3 TTITLE 'Employees By Job'
BREAK ON job SKIP 1
SELECT job
, empno
, ename
, hiredate
FROM emp;

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 185

www.appltop.com
info@appltop.com

Demo Tables

DEPT

DEPTNO DNAME LOC

--------- -------------- -------------

 10 ACCOUNTING New York

 20 RESEARCH Dallas

 30 SALES Chicago

 40 OPERATIONS Boston

EMP
EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

--------- ---------- --------- --------- --------- --------- --------- ---------

 7369 SMITH CLERK 7902 17-DEC-80 800 20

 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30

 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30

 7566 JONES MANAGER 7839 02-APR-81 2975 20

 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30

 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30

 7782 CLARK MANAGER 7839 09-JUN-81 2572.5 10

 7788 SCOTT ANALYST 7566 19-APR-87 3000 20

 7839 KING PRESIDENT 17-NOV-81 5250 10

 7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30

 7876 ADAMS CLERK 7788 23-MAY-87 1100 20

 7900 JAMES CLERK 7698 03-DEC-81 950 30

 7902 FORD ANALYST 7566 03-DEC-81 3000 20

 7934 MILLER CLERK 7782 23-JAN-82 1365 10

SALGRADE
GRADE LOSAL HISAL

--------- --------- ---------

 1 700 1200

 2 1201 1400

 3 1401 2000

 4 2001 3000

 5 3001 9999

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 186

www.appltop.com
info@appltop.com

NOTES

Training Guide
SQL & SQL*Plus for Beginners

Copyright © 1999 � 2004 ApplTop Solutions Limited 187

www.appltop.com
info@appltop.com

NOTES

